
Version: v1.1.2 (067741e) 1

The Packer Book

James Turnbull

April 20, 2018

Version: v1.1.2 (067741e)

Website: The Packer Book

http://www.packerbook.com

Some rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,

mechanical or photocopying, recording, or otherwise, for commercial purposes
without the prior permission of the publisher.

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of

this license, visit here.
© Copyright 2017 - James Turnbull <james@lovedthanlost.net>

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:james+packer@lovedthanlost.net

Contents

Page

Chapter 1 First steps with Packer 1
Setting up Amazon Web Services . 2
Running Packer . 3
Creating an initial template . 4
Variables . 6

Environment variables . 6
Populating variables . 8

Builders . 9
Communicators . 13
Validating a template . 13
Building our image . 15
Summary . 19

List of Figures 20

List of Listings 21

Index 22

i

Chapter 1

First steps with Packer

Packer’s purpose is building images—so we’re going to start by building a basic
image. Packer calls the process of creating an image a build. Artifacts are the
output from builds. One of the more useful aspects of Packer is that you can run
multiple builds to produce multiple artifacts.
A build is fed from a template. The template is a JSON document that describes the
image we want to build—both where we want to build it and what the build needs
to contain. Using JSON as a format strikes a good balance between readable and
machine-generated.

 NOTE New to JSON? Here’s a good article to get you started. You can also
find an online linter to help validate JSON syntax.

To determine what sort of image to build, Packer uses components called builders.
A builder produces an image of a specific format—for example, an AMI builder
or a Docker image builder. Packer ships with a number of builders, but as we’ll
discover in Chapter 7, you can also add your own builder in the form of plugins.

1

https://www.sitepoint.com/basics-json-syntax-tips/
https://jsonlint.com/

Chapter 1: First steps with Packer

We’re going to use Packer to build an Amazon Machine Image or AMI. AMIs under-
pin Amazon Web Services virtual machine instances run from the Elastic Compute
Cloud or EC2. You’d generally be building your own AMIs to launch instances
customized for your environment or specific purpose. We’ve chosen to focus on
Cloud-based images in this book because they are easy to describe and work with
while learning. Packer, though, is also able provision virtual machines.
As we’re using AMIs here, before we can build our image, you’ll need an Amazon
Web Services account. Let’s set that up now.

Setting up Amazon Web Services
We’re going to use Amazon Web Services to build our initial image. Amazon Web
Services have a series of free plans (Amazon calls them tiers) that you can use to
test Packer at no charge. We’ll use those free tiers in this chapter.
If you haven’t already got a free AWS account, you can create one at:
https://aws.amazon.com/

Then follow the Getting Started process.

Version: v1.1.2 (067741e) 2

https://aws.amazon.com/
https://aws.amazon.com/free/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html

Chapter 1: First steps with Packer

Figure 1.1: Creating an AWS account

As part of the Getting Started process you’ll receive an access key ID and a secret ac-
cess key. If you have an Amazon Web Services (AWS) account you should already
have a pair of these. Get them ready. You’ll use them shortly.
Alternatively, you should look at IAM or AWS Identity and Access Management.
IAM allows multi-user role-based access control to AWS. It allows you to create
access credentials per user and per AWS service.
Configuring it is outside the scope of this book, but here are some good places to
learn more:

• IAM getting started guide.
• Root versus IAM credentials.
• Best practices for managing access keys.

We’re going to use a t2.micro instance to create our first image. If your account is
eligible for the free tier (and generally it will be) then this won’t cost you anything.

 WARNING There is a chance some of the examples in this book might
cost you some money. Please be aware of your billing status and the state of your
infrastructure.

Running Packer
Packer is contained in a single binary: packer. We installed that binary in the last
chapter. Let’s run it now and see what options are available to us.

Version: v1.1.2 (067741e) 3

http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-setup.html
http://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
http://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html

Chapter 1: First steps with Packer

Listing 1.1: The packer binary

$ packer
Usage: packer [--version] [--help] <command> [<args>]

Available commands are:
build build image(s) from template
fix fixes templates from old versions of packer
inspect see components of a template
push push a template and supporting files to a Packer

build service
validate check that a template is valid
version Prints the Packer version

The packer binary builds images using the build sub-command and inputting a
JSON file called a template.
Let’s create a directory hold our Packer templates.

Listing 1.2: Creating a template directory

$ mkdir packer_templates

Now let’s create an initial template to generate our initial AMI.

Creating an initial template
Let’s create an empty template file to start.

Version: v1.1.2 (067741e) 4

Chapter 1: First steps with Packer

Listing 1.3: Creating an empty template file

$ touch initial_ami.json

Now let’s open an editor and populate our first template file. The template file
defines the details of the image we want to create and some of the how of that
creation. Let’s see that now.

Listing 1.4: Our initial_ami.json file

{
"variables": {
"aws_access_key": "",
"aws_secret_key": ""

},
"builders": [{
"type": "amazon−ebs",
"access_key": "{{user `aws_access_key`}}",
"secret_key": "{{user `aws_secret_key`}}",
"region": "us−east−1",
"source_ami": "ami−a025aeb6",
"instance_type": "t2.micro",
"ssh_username": "ubuntu",
"ami_name": "packer−example {{timestamp | clean_ami_name}}"

}]
}

The template is a nested JSON hash with a series of blocks defined—in this case
variables and builders. Let’s take a look at both blocks and their contents.

Version: v1.1.2 (067741e) 5

Chapter 1: First steps with Packer

Variables
The variables block contains any user-provided variables that Packer will use as
part of the build. User variables are useful in these three ways:

• As shortcuts to values that you wish to use multiple times.
• As variables with a default value that can be overridden at build time.
• For keeping secrets or other values out of your templates.

User variables must be defined in the variables block. If you have no variables
then you simply do not specify that block. Variables are key/value pairs in string
form; more complex data structures are not present. These variables are translated
into strings, numbers, booleans, and arrays when parsed into Packer. Packer as-
sumes a list of strings separated by commas should be interpreted as an array.

 NOTE Packer also has another type of variable, called template variables,
that we’ll see later in the book.

User variables can either have a specified value or be defined null—for example
“”. If a variable is null then, for a template to be valid and executed, its value
must be provided in some way when Packer runs.
In addition to defined values, variables also support environment variables.

Environment variables
A common configuration approach is to use environment variables to store con-
figuration information. Inside the variables block we can retrieve the value of

Version: v1.1.2 (067741e) 6

Chapter 1: First steps with Packer

an environment variable and use it as the value of a Packer variable. We do this
using a function called env.
Functions allow operations on strings and values inside Packer templates. In this
case the env function only works in the variables block when setting the default
value of a variable. We can use it like so:

 TIP You can find a full list of the available functions in the Packer engine
documentation.

Listing 1.5: Environment variables

{
"variables": {
"aws_access_key": "{{env `AWS_ACCESS_KEY`}}",
"aws_secret_key": "{{env `AWS_SECRET_KEY`}}"

},

Note that the function and the environmental variable to be retrieved are enclosed
in double braces: {{ }}. The specific environment variable to be retrieved is
specified inside back ticks.

 NOTE You can only use environment variables inside the variables block.
This is to ensure a clean source of input for a Packer build.

Version: v1.1.2 (067741e) 7

https://www.packer.io/docs/templates/engine.html
https://www.packer.io/docs/templates/engine.html

Chapter 1: First steps with Packer

Populating variables
If you’re not setting a default value for a variable then variable values must be
provided to Packer at runtime. There are several different ways these can be
populated. The first is via the command line at build time using the -var flag.

Listing 1.6: Specifying a variable on the command line

$ packer build \
-var 'aws_access_key=secret' \
-var 'aws_secret_key=reallysecret' \
initial_ami.json

You can specify the -var flag as many times as needed to specify variable values.
If you attempt to define the same variable more than once, the last definition of
the variable will stand.
You can also specify variable values in a JSON file. For example, you could create
a file called variables.json in our initial_ami directory and populate it.

Listing 1.7: Specifying variable values in a file

{
"aws_access_key": "secret",
"aws_secret_key": "reallysecret"

}

You can then specify the variables.json file on the command line with the -var
-file flag like so:

Version: v1.1.2 (067741e) 8

Chapter 1: First steps with Packer

Listing 1.8: Specifying the variable file

$ packer build \
-var-file=variables.json \
initial_ami.json

You can define multiple files using multiple instances of the -var-file flag. Like
variables specified on the command line, if a variable is defined more than once
then the last definition of the variable stands.

Builders
The next block is the engine of the template, the builders block. The builders
turn our template into a machine and then into an image. For our Amazon AMI
image we’re using the amazon-ebs builder. There are a variety of Amazon AMI
builders; the amazon-ebs builder creates AMI images backed by EBS volumes.

 TIP See this storage reference page for more details.

Version: v1.1.2 (067741e) 9

https://www.packer.io/docs/builders/amazon-ebs.html
https://www.packer.io/docs/builders/amazon.html
https://www.packer.io/docs/builders/amazon.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ComponentsAMIs.html#storage-for-the-root-device

Chapter 1: First steps with Packer

Listing 1.9: The initial_ami builders block

"builders": [{
"type": "amazon−ebs",
"access_key": "{{user `aws_access_key`}}",
"secret_key": "{{user `aws_secret_key`}}",
"region": "us−east−1",
"source_ami": "ami−a025aeb6",
"instance_type": "t2.micro",
"ami_name": "packer−example {{timestamp | clean_ami_name}}"

}]

Specify the builder as an element inside a JSON array. Here we’ve only specified
one builder, but you can specify more than one to build a series of images.

 TIP We’ll see more about multiple builders in Chapter 7.

Specify the builder you want to use using the type field, and note that each build in
Packer has to have a name. In most cases this defaults to the name of the builder,
here specified in the type key as amazon-ebs. However, if you need to specify
multiple builders of the same type—such as if you’re building two AMIs—then
you need to name your builders using a name key.

Version: v1.1.2 (067741e) 10

Chapter 1: First steps with Packer

Listing 1.10: Naming builders blocks

"builders": [
{
"name": "amazon1",
"type": "amazon−ebs",

. . .
},
{
"name": "amazon2",
"type": "amazon−ebs",

}
]

Here we’ve specified two builders, one named amazon1, the other amazon2, both
with a type of amazon-ebs.

 NOTE If you specify two builders of the same type, you must name at least
one of them. Builder names need to be unique.

To configure the builder, we also specify a number of parameters, called keys,
varying according to the needs and configuration of the builder. The first two
keys we’ve specified, access_key and secret_key, are the credentials to use with
AWS to build our image. These keys reference the variables we’ve just created.
We reference variables with the user function. Again, our function is wrapped in
braces, {{ }}, and the input of the variable name is surrounded by back ticks.

Version: v1.1.2 (067741e) 11

https://www.packer.io/docs/templates/engine.html

Chapter 1: First steps with Packer

Listing 1.11: Referencing variables

"access_key": "{{user `aws_access_key`}}",
"secret_key": "{{user `aws_secret_key`}}",

This will populate our two keys with the value of the respective variables.
We also specify some other useful keys: the region in which to build the AMI, and
the source AMI to use to build the image. This is a base image from which our
new AMI will be constructed. In this case we’ve chosen an Ubuntu 17.04 base
AMI located in the us-east-1 region.

 TIP If you’re running this build in another region, then you’ll need to find
an appropriate image.

We also specify the type of instance we’re going to use to build our image, in our
case t2.micro instance type, which should be in the free tier for most accounts.
Lastly, we specify a name for our AMI:

Listing 1.12: Naming our AMI

"ami_name": "packer−example {{timestamp | clean_ami_name}}"

Our AMI name uses two functions: timestamp and clean_ami_name. The
timestamp function returns the current Unix timestamp. We then feed it into the
clean_ami_name function, which removes any characters that are not supported
in an AMI name. This also gives you some idea of how you can call functions

Version: v1.1.2 (067741e) 12

https://cloud-images.ubuntu.com/locator/ec2/

Chapter 1: First steps with Packer

and chain functions together to pipe the output from one function as the input of
another.
The resulting output of both functions is then added as a suffix to the name packer
-example. So the final AMI name would look something like:
packer-example 1495043044

We do this because AMI images need to be uniquely named.

 NOTE There’s also a uuid function that can produce a UUID if you want a
more granular name resolution than time in seconds.

Communicators
Packer builders communicate with the remote hosts they use to build images with
a series of connection frameworks called communicators. You can consider com-
municators as the “transport” layer for Packer. Currently, Packer supports SSH
(the default), and WinRM (for Microsoft Windows), as communicators. Commu-
nicators are highly customizable and expose most of the configuration options
available to both SSH and WinRM. You configure most of these options in the
individual builder. We’ll see some of this in Chapter 4, and there is also documen-
tation on the Packer site.

Validating a template
Before we build our image, let’s ensure our template is correct. Packer comes with
a useful validation sub-command to help us with this. It performs syntax checking
and validates that the template is complete.

Version: v1.1.2 (067741e) 13

https://www.packer.io/docs/templates/communicator.html
https://www.packer.io/docs/templates/communicator.html
https://www.packer.io/docs/templates/communicator.html

Chapter 1: First steps with Packer

We can run validation with the packer validate command.

Listing 1.13: Validating a template

$ packer validate initial_ami.json
Failed to parse template: Error parsing JSON: invalid character
'"' after object key:value pair
At line 4, column 6 (offset 49):

3: "aws_access_key": ""
4: "

^

Oops. Looks like we have a syntax error in our template. Let’s fix that missing
comma and try to validate it again.

Listing 1.14: Validating the template again

$ packer validate initial_ami.json
Template validated successfully.

Now we can see that our initial_ami.json template has been parsed and vali-
dated. Let’s move on to building our image.

 TIP You can use the packer inspect command to interrogate a template and
see what it does.

Version: v1.1.2 (067741e) 14

Chapter 1: First steps with Packer

Building our image
When Packer is run, the amazon-ebs builder connects to AWS and creates an in-
stance of the type specified and based on our source AMI. It then creates a new
AMI from the instance just created and saves it on Amazon. We execute the build
by running the packer command with the build flag like so:

Listing 1.15: Building our initial AMI image

$ packer build initial_ami.json
amazon-ebs output will be in this color.

==> amazon-ebs: Prevalidating AMI Name...
==> amazon-ebs: Error querying AMI: NoCredentialProviders: no
valid providers in chain
==> amazon-ebs: caused by: EnvAccessKeyNotFound: failed to find
credentials in the environment.
==> amazon-ebs: SharedCredsLoad: failed to load profile, .
==> amazon-ebs: EC2RoleRequestError: no EC2 instance role found
==> amazon-ebs: caused by: RequestError: send request failed

. . .

==> Builds finished but no artifacts were created.

Ah. Our build has failed as we haven’t specified values for our variables. Let’s try
that again, this time with some variable values defined.

Version: v1.1.2 (067741e) 15

Chapter 1: First steps with Packer

Listing 1.16: Building our initial AMI image again

$ packer build \
-var 'aws_access_key=secret' \
-var 'aws_secret_key=reallysecret' \
initial_ami.json

 TIP The Amazon EC2 builders also support AWS local credential configura-
tion. If we have local credentials specified, we could skip defining the variable
values.

Now when we run the build you’ll start to see output as Packer creates a new
instance and builds an image from it.

Version: v1.1.2 (067741e) 16

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Chapter 1: First steps with Packer

Listing 1.17: Building the actual initial_ami image

amazon-ebs output will be in this color.

==> amazon-ebs: Prevalidating AMI Name...
amazon-ebs: Found Image ID: ami-a025aeb6

==> amazon-ebs: Creating temporary keypair: packer_591c9ddd-aff8-
2980-8656-3f4187dc0627
==> amazon-ebs: Creating temporary security group for this
instance...
==> amazon-ebs: Authorizing access to port 22 the temporary
security group...
==> amazon-ebs: Launching a source AWS instance...

amazon-ebs: Instance ID: i-0da4443cbe9779acc
==> amazon-ebs: Adding tags to source instance

amazon-ebs: Adding tag: "Name": "Packer Builder"
==> amazon-ebs: Waiting for SSH to become available...
==> amazon-ebs: Connected to SSH!
==> amazon-ebs: Stopping the source instance...
==> amazon-ebs: Waiting for the instance to stop...
==> amazon-ebs: Creating the AMI: initial-ami 1495047645

amazon-ebs: AMI: ami-6a40397c
==> amazon-ebs: Terminating the source AWS instance...
==> amazon-ebs: Cleaning up any extra volumes...
==> amazon-ebs: No volumes to clean up, skipping
==> amazon-ebs: Deleting temporary security group...
==> amazon-ebs: Deleting temporary keypair...
Build 'amazon-ebs' finished.

==> Builds finished. The artifacts of successful builds are:
--> amazon-ebs: AMIs were created:

us-east-1: ami-6a40397c

We can see our log output is colored for specific builders. Log lines from a specific
builder are prefixed with the name of the builder: amazon-ebs.

Version: v1.1.2 (067741e) 17

Chapter 1: First steps with Packer

 TIP You can also output logs in machine-readable form by adding the
-machine-readable flag to the build process. You can find the machine-readable
output’s format in the Packer documentation.

We can see Packer has created an artifact: our new AMI ami-6a40397c in the
us-east-1 region. Let’s have a quick look at that AMI in the AWS Console.

Figure 1.2: Our new AMI

 TIP Your new AMI occupies storage space in your AWS account. That costs
some money—not a lot, but some. If you don’t want to pay that money, you
should clean up any AMIs you create during testing.

We can see the AMI has been named using the concatenation of the packer-

example text and the output of the timestamp function. Neat!

 NOTE If the build were for some other image type—for example, a virtual
machine—then Packer might emit a file or set of files as artifacts from the build.

Version: v1.1.2 (067741e) 18

https://www.packer.io/docs/commands/index.html#format-for-machine-readable-output
https://www.packer.io/docs/commands/index.html#format-for-machine-readable-output

Chapter 1: First steps with Packer

Summary
You’ve now created your first Packer image. It wasn’t very exciting though—just
a clone of an existing AMI image. What happens if we want to add something to
or change something about our image? In the next chapter we’ll learn all about
Packer’s provisioning capabilities.

Version: v1.1.2 (067741e) 19

List of Figures

1.1 Creating an AWS account . 2
1.2 Our new AMI . 18

20

Listings

1.1 The packer binary . 4
1.2 Creating a template directory . 4
1.3 Creating an empty template file . 5
1.4 Our initial_ami.json file . 5
1.5 Environment variables . 7
1.6 Specifying a variable on the command line 8
1.7 Specifying variable values in a file . 8
1.8 Specifying the variable file . 9
1.9 The initial_ami builders block . 10
1.10 Naming builders blocks . 11
1.11 Referencing variables . 12
1.12 Naming our AMI . 12
1.13 Validating a template . 14
1.14 Validating the template again . 14
1.15 Building our initial AMI image . 15
1.16 Building our initial AMI image again 16
1.17 Building the actual initial_ami image 17

21

Index
Amazon, 2
AMI, 2
AWS, 2, 3

Access Key ID, 3
Secret Access Key, 3

AWS IAM, see Identity and Access Man-
agement

Builders, 9
Names, 10

Communicators, 13

EC2, 2

Function
clean_ami_name, 12
env, 7
timestamp, 12
user, 11
uuid, 13

Functions, 7

IAM, see Identity and Access Manage-
ment

Identity and Access Management, 3

JSON, 1, 4

Machine-readable output, 18

packer
build
var, 8
var-file, 9

inspect, 14

SSH, 13

Templates, 6

Variables, 6

WinRM, 13

22

Thanks! I hope you enjoyed the book.

© Copyright 2017 - James Turnbull <james@lovedthanlost.net>

mailto:james+packer@lovedthanlost.net

	First steps with Packer
	Setting up Amazon Web Services
	Running Packer
	Creating an initial template
	Variables
	Environment variables
	Populating variables

	Builders
	Communicators
	Validating a template
	Building our image
	Summary

	List of Figures
	List of Listings
	Index

